
Docker Project Template
Documentation

Release 2

Wolnosciowiec Team

Dec 07, 2020

Contents:

1 Getting started 3
1.1 Read about project Structure . 3

2 Structure 5
2.1 .rkd . 5
2.2 apps/conf/ . 5
2.3 apps/conf.dev/ . 5
2.4 apps/profile/ . 5
2.5 apps/healthchecks/ . 5
2.6 apps/repos-enabled/ . 6
2.7 apps/www-data/ . 6
2.8 containers/ . 6
2.9 data/ . 6
2.10 hooks.d/ . 6

3 Basic commands 7
3.1 Installing applications from Snippet Cooperative . 7
3.2 Starting, upgrading and stopping services . 7
3.3 Controlling maintenance mode on production . 8
3.4 Diagnosing issues (advanced usage on production) . 8

4 Creating first service 9
4.1 Generating a service from template using Cooperative . 9
4.2 Creating a service - the manual way . 9
4.3 Bringing up created service . 10
4.4 Read more about Creating practical services with volumes, subdomains, passing credentials 10

5 Creating practical services with volumes, subdomains, passing credentials 11
5.1 Connecting domains, subdomains and optionally SSL . 11
5.2 Passing credentials and configuration options . 12
5.3 Volumes . 12

6 Understanding architecture 15

7 Profiles - matching services by query 17
7.1 Example . 17
7.2 Syntax . 17

i

8 Deploying to production with Ansible 19
8.1 Concept - Single key to all credentials . 19
8.2 Getting started with Harbor deployments . 20
8.3 Advanced usage . 20

9 From authors 23

ii

Docker Project Template Documentation, Release 2

docker-compose based framework for building production-like environments - developing and testing on your local
computer, deploying to your server or cluster from shell or from CI. Harbor is a pre-configured set of most popular
technologies available to use with docker-compose, in addition of our exclusive features

Features:

• Service discovery (pins containers into WWW domains by labelling)

• Deployment strategies: compose’s standard, recreation, and rolling-updates (zero-downtime updates)

• Automatic Letsencrypt SSL

• Standardized directory structures and design patterns

• Ready to use snippets of code and solutions

• Ansible integration to prepare your production/testing server and deploy updates in extremely intuitive way

Contents: 1

Docker Project Template Documentation, Release 2

2 Contents:

CHAPTER 1

Getting started

1. Install Harbor

pip install rkd-harbor

2. Create GIT project

mkdir my-project
cd my-project

git init

3. Create Harbor project

harbor :create:project

1.1 Read about project Structure

3

Docker Project Template Documentation, Release 2

4 Chapter 1. Getting started

CHAPTER 2

Structure

Project consists of a standard structure which includes:

2.1 .rkd

RiotKit-Do directory, where you can define custom tasks, there are also temporary files and logs stored (ADVANCED)

2.2 apps/conf/

docker-compose YAML files with definitions of containers, networks and volumes

2.3 apps/conf.dev/

Same as apps/conf, but enabled only on development environment

2.4 apps/profile/

Defined service profiles that allows to select services on which you operate in given command (eg. wordpress profile
= all instances of wordpress)

2.5 apps/healthchecks/

RiotKit’s InfraCheck integration, here are placed all of the healthcheck definitions (see section about health and mon-
itoring)

5

Docker Project Template Documentation, Release 2

2.6 apps/repos-enabled/

GIT repositories definitions (see section about applications from external GIT repositories)

2.7 apps/www-data/

Cloned applications from GIT (see section about applications from external GIT repositories)

2.8 containers/

Configuration data mounted via bind-mount to inside containers (should be read-only and versioned by GIT)

2.9 data/

Bind-mounted volume storage for containers, only data that is generated dynamically by containers is stored there.

Example use cases:

• Database data eg. /var/lib/mysql

• Generated SSL certificates storage

• NGINX generated configurations

2.10 hooks.d/

Scripts that are executed at given time in the Harbor lifecycle (eg. pre-start, post-start, pre-upgrade, . . .) See section
about hooks.

hooks.d/
hooks.d/pre-upgrade
hooks.d/(...)
hooks.d/post-start

2.10.1 Keeping standards

KISS - keep it simple stupid

By keeping standards in your project you make sure, that any person that joins your project or a contributor could be
satisfied with Harbor documentation. Any outstanding solutions would require you to create extra documentation in
your project.

2.10.2 OK, got it, let’s learn Basic commands

6 Chapter 2. Structure

CHAPTER 3

Basic commands

Harbor defines a lot of RKD tasks, that automates preparing changes to project as well as operating on live organism.

At first we would like you to get familiar with our Snippet Cooperative, which is a place to share a code with others -
for you now it means you can install an application with a single command.

3.1 Installing applications from Snippet Cooperative

Browse the catalogue of applications at: https://github.com/riotkit-org/harbor-snippet-cooperative Then, perform an
installation within a single command.

at first do a repository sync, later you don't need to do it all the time
harbor :cooperative:sync :cooperative:install harbor/redis

3.2 Starting, upgrading and stopping services

Basic tasks lets you control the services running in your environment, just like you were doing before with docker ps
but with a difference that Harbor interface is more domain-focused interface.

create and start containers
harbor :start

pull new images, update git repositories, then start
harbor :upgrade

start selected service
harbor :service:up hello

remove selected service
harbor :service:rm hello

(continues on next page)

7

https://github.com/riotkit-org/harbor-snippet-cooperative

Docker Project Template Documentation, Release 2

(continued from previous page)

list all services, running and not running
harbor :service:list

check a report of running service
harbor :service:report hello

3.3 Controlling maintenance mode on production

Sometimes, when bad things happens, or a scheduled repair is planned a maintenance mode is required. Harbor
provides a simple maintenance mode in 3 ways: global, per-service, per-domain

maintenance mode per single service
harbor :maintenance:on --service hello

per single domain
harbor :maintenance:on --domain domain-name.org

global maintenance mode - for all services
harbor :maintenance:on --global

3.4 Diagnosing issues (advanced usage on production)

do the docker-compose ps, in case you need
harbor :diagnostic:compose:ps

in case you need a full docker-compose arguments used by Harbor to execute some
→˓commands manually
harbor :diagnostic:dump-compose-args

dump all yamls to big one for analysis
harbor :diagnostic:compose:config

force regenerate all Letsencrypt certificates (use with caution, there are limits
→˓of hits on Letsencrypt)
harbor :gateway:ssl:regenerate

reload gateway in case, when the the nginx.tmpl was modified
harbor :gateway:reload

8 Chapter 3. Basic commands

CHAPTER 4

Creating first service

Service definitions are docker-compose.yml files, with addition of Harbor’s patterns which allows to automate and
standardize the way of environment preparation.

Few rules:

• YAML files are stored at ./apps/conf

• The naming: apps.MY-APP-NAME.yaml for applications, and infrastructure.
MY-TECHNICAL-APP-NAME.yaml for technical services (health checks, backups etc.)

• Volumes with configuration files eg. nginx.conf - should be in ./container/MY-APP-NAME directory

• Volumes with external git repositories should be in ./apps/www-data/MY-APP-NAME directory

• Volumes with dynamic data such as user uploads should be in ./data/MY-APP-NAME directory

4.1 Generating a service from template using Cooperative

Best way to create a service is to use a generator - to avoid common mistakes.

Demo: https://asciinema.org/a/348867

harbor :cooperative:sync
harbor :cooperative:install harbor/webservice

The below example will sync coop repositories, then use harbor/webservice template to generate docker-
compose yaml file, that will be placed in ./apps/conf directory.

4.2 Creating a service - the manual way

Create a standard docker-compose format file in ./apps/conf directory, name it properly eg. apps.adminer.
yml and put following example contents:

9

https://asciinema.org/a/348867

Docker Project Template Documentation, Release 2

version: 2.3
services:

adminer:
image: adminer
restart: always
environment:

VIRTUAL_HOST: db.example.localhost
VIRTUAL_PORT: "80"
LETSENCRYPT_HOST: db.example.localhost
LETSENCRYPT_EMAIL: example@example.org

labels:
org.riotkit.updateStrategy: "rolling"

4.3 Bringing up created service

Use :service:up task to bring up a recently created service.

harbor :service:list
harbor :service:up service-name

After checking that everything works correctly the service definition + configuration files placed in ./container
directory should be pushed to GIT.

4.4 Read more about Creating practical services with volumes, sub-
domains, passing credentials

10 Chapter 4. Creating first service

CHAPTER 5

Creating practical services with volumes, subdomains, passing
credentials

Harbor is a complete framework for building flexible multi-container environments, to complete it’s mission Harbor
provides set of tools and patterns described in this documentation chapter.

5.1 Connecting domains, subdomains and optionally SSL

Domains and subdomains are automatically discovered by JWilder’s Docker-Gen, when a container is started.

Docker-gen container, later called “service discovery” collects environment variables - including VIRTUAL_HOST
and VIRTUAL_PORT for each running container, then generates NGINX configuration file and calls reload.

Similar mechanism is practiced by docker-letsencrypt-nginx-proxy-companion to automatically connect Let’s Encrypt
certificate - LETSENCRYPT_HOST and LETSENCRYPT_EMAIL environment variables are required to do so.

Example:

version: 2.4
services:

app_web_mattermost:
image: mattermost/mattermost-prod-web:5.23.2
depends_on:

- app_mattermost
environment:

APP_HOST: "app_mattermost"
APP_PORT: "8000"

gateway configuration
VIRTUAL_HOST: "mattermost.${MAIN_DOMAIN}${DOMAIN_SUFFIX}"
VIRTUAL_PORT: "80"
LETSENCRYPT_HOST: "mattermost.${MAIN_DOMAIN}${DOMAIN_SUFFIX}"
LETSENCRYPT_EMAIL: "${LETSENCRYPT_EMAIL}"

11

Docker Project Template Documentation, Release 2

MAIN_DOMAIN=riotkit.org
DOMAIN_SUFFIX=.localhost
LETSENCRYPT_EMAIL=noreply@riotkit.org

MAIN_DOMAIN, DOMAIN_SUFFIX and LETSENCRYPT_EMAIL convention

• Use MAIN_DOMAIN to specify a main domain if hosting services under multiple subdomains

• DOMAIN_SUFFIX, on development environment set to “.localhost” - in result on Linux you will be able to
access services like on production but under localhost sudomain eg. my-subdomain.riotkit.org.localhost. Please
note: When using harbor :deployment:apply the DOMAIN_SUFFIX is automatically erased when
deploying to production server

• LETSENCRYPT_EMAIL allows to have a globally defined e-mail address for all services

5.2 Passing credentials and configuration options

Most universal way to configure services is to pass environment variables. Passwords, sensitive data and com-
mon values shared between services put in .env file, then encrypt it using Ansible Vault command harbor
:env:encrypt. In result a .env-prod file will be produced. Don’t commit .env to git - add it to ignore,
commit .env-prod instead.

When deploying to production server with harbor :deployment:apply mechanism the .env-prod will be
decrypted on-the-fly and placed as .env on the destination server.

version: 2.4
services:

postgres:
image: postgres:12.4
environment:

POSTGRES_USER: "postgres"
POSTGRES_PASSWORD: "${DB_PASSWD}"
POSTGRES_DATABASE: "mydb"

expose:
- 5432

volumes:
- ./data/pg:/var/lib/pgsql

DB_PASSWD=my-passwd

Note: .env is read by docker-compose and by RKD in makefile.yaml by default. It is a good place to put your
configuration options

5.3 Volumes

In previous chapter we were talking about naming conventions, remember? There is a distinction for static and
dynamic volumes.

• Static volumes are kept in GIT repository, those are usually versioned configuration files

• Dynamic volumes are application data (database binary files, user file uploads)

12 Chapter 5. Creating practical services with volumes, subdomains, passing credentials

Docker Project Template Documentation, Release 2

version: 2.4
services:

my-website:
image: nginx:1.19
environment:

VIRTUAL_HOST: "my-website.localhost"
VIRTUAL_PORT: "80"

volumes:
in www-data we keep other cloned git repositories managed by Harbor
- ./apps/www-data/my-website:/var/www/html
- ./container/my-website/nginx.conf:/etc/nginx/nginx.conf:ro

postgres:
image: postgres:12.4
environment:

POSTGRES_USER: "postgres"
POSTGRES_PASSWORD: "${DB_PASSWD}"
POSTGRES_DATABASE: "mydb"

expose:
- 5432

volumes:
- ./data/pg:/var/lib/pgsql

5.3. Volumes 13

Docker Project Template Documentation, Release 2

14 Chapter 5. Creating practical services with volumes, subdomains, passing credentials

CHAPTER 6

Understanding architecture

Harbor imposes the architecture of a centralized gateway for web services. It is just like in a cloud, or in Kubernetes -
the centralized Ingress/Webserver takes the traffic and routes it to other services.

Advantages:

• Easy to manage, and to maintain, one router to reload

• Integration with services such as LetsEncrypt without additional work to be done

• Most popular architecture for hosting multiple services

• SSL termination at the router edge makes SSL support almost transparent to applications

15

Docker Project Template Documentation, Release 2

16 Chapter 6. Understanding architecture

CHAPTER 7

Profiles - matching services by query

Harbor 2.0 introduced Service Profiles to make operating only on selected services possible. The profiles are selectors
that picks services you want to operate on.

Benefits

• Secure. Services that should not be touched are not touched

• Handy. Can be used in harbor :deployment:apply task when deploying to production environment to
update only part of services (eg. all instances of data collecting application)

• Flexible. The syntax of the filter is pure Python, you can create as much advanced queries as far as you would
be able to understand them :)

7.1 Example

Given we have a “gateway” selector, that picks all services that name begins with “gateway_”

apps/profile/gateway.profile.py

name.startswith('gateway_')

Now we can use it in all service management and environment stop/start tasks, for example harbor :start
--profile=gateway

7.2 Syntax

Variable Description
name Name of the service (string)
service Service attributes, docker-compose definition (dict)

Notes:

17

Docker Project Template Documentation, Release 2

• Always check every node in dictionary for existence - Example: 1) labels, 2) labels.some-label

Advanced example:

"labels" in service and "org.riotkit.group" in service['labels'] and service['labels
→˓']['org.riotkit.group'] == "database"

18 Chapter 7. Profiles - matching services by query

CHAPTER 8

Deploying to production with Ansible

8.1 Concept - Single key to all credentials

Harbor 2.0 standardizes the way of deploying itself to production servers, introducing a simplified deployment from
single repository with one passphrase for all secrets.

Deployment mechanism is installing Harbor + dependencies from requirements.txt, cloning the repository, setting
permissions, adding autostart with systemd and starting the project. Please note, that it requires all changes to be
committed to git repository before starting harbor :deployment:apply command.

Encrypted deployment.yml file can contain ssh passwords, ssh private key. It’s safe to store it in repository -
Ansible Vault is using strong AES encryption

deploy_user: my-deployment-user
deploy_group: my-deployment-user

Directory, where the project will be installed
remote_dir: /home/my-deployment-user/project

Target repository to clone (in most cases it should be the same repository as
→˓current one)
leave commented for automatic detection
#git_url: git@github.com:your-org/your-repo.git

Secret url is helpful, when you cannot setup working ssh-agent. Secret url is used
→˓only at deployment time, later
a regular URL (without credentials) is leaved on the machine
#git_secret_url: https://user:password@github.com/your-org/your-repo.git

Will make a file in /etc/sudoers.d/ to allow ssh-agent passing into sudo session
configure_sudoers: true

nodes:
production:

(continues on next page)

19

Docker Project Template Documentation, Release 2

(continued from previous page)

- host: remote-host.org
port: 2222
user: my-deployment-user
sudo_password: my-sudo-password

select between password or key-based authentication
password: my-password
private_key: |

-----BEGIN OPENSSH PRIVATE KEY-----
(................................)
-----END OPENSSH PRIVATE KEY-----

8.2 Getting started with Harbor deployments

First time you need to download a required Ansible role and optionally generate an example deployment.yml file

harbor :deployment:files:update :deployment:create-example

Now fill up deployment.yml file, then perform a test deployment.

tip: use --ask-vault-pass if you encrypt .env file
tip: you need to have all changes (except deployment.yml - you can hold with this
→˓file) committed to repository before running deployment
harbor :deployment:apply

When deployment ran smoothly and you are sure that’s pretty all, then encrypt deployment.yml

tip: Use same key as in .env file to make it simpler
harbor :vault:encrypt deployment.yml

8.3 Advanced usage

Use switches and environment variables to customize playbook name, inventory name, to pass Ansible Vault password,
to ask for user ssh login or ssh password.

ask interactively for sudo password
harbor :deployment:apply --ask-sudo-pass

provide a vault password in alternative way
VAULT_PASSWORDS="oh-thats-secret" harbor :deployment:apply

another way to provide vault password
echo 'VAULT_PASSWORDS="oh-thats-secret"' > /mnt/secret-encrypted-storage/.secret-env
source .secret-env && harbor :deployment:apply

run witha custom playbook (place it in .rkd/deployment/
PLAYBOOK="my-playbook.yml" harbor :deployment:apply

deploying from a custom branch instead of "master"
harbor :deployment:apply --branch primary

(continues on next page)

20 Chapter 8. Deploying to production with Ansible

Docker Project Template Documentation, Release 2

(continued from previous page)

providing a key for GIT clone used to setup project repository on target machine
harbor :deployment:apply --git-key="~/.ssh/id_rsa"

8.3. Advanced usage 21

Docker Project Template Documentation, Release 2

22 Chapter 8. Deploying to production with Ansible

CHAPTER 9

From authors

Project was started as a part of RiotKit initiative, for the needs of grassroot organizations such as:

• Fighting for better working conditions syndicalist (International Workers Association for example)

• Tenants rights organizations

• Various grassroot organizations that are helping people to organize themselves without authority

• Grassroot groups fighting for democratic rights

RiotKit Collective

23

	Getting started
	Read about project Structure

	Structure
	.rkd
	apps/conf/
	apps/conf.dev/
	apps/profile/
	apps/healthchecks/
	apps/repos-enabled/
	apps/www-data/
	containers/
	data/
	hooks.d/

	Basic commands
	Installing applications from Snippet Cooperative
	Starting, upgrading and stopping services
	Controlling maintenance mode on production
	Diagnosing issues (advanced usage on production)

	Creating first service
	Generating a service from template using Cooperative
	Creating a service - the manual way
	Bringing up created service
	Read more about Creating practical services with volumes, subdomains, passing credentials

	Creating practical services with volumes, subdomains, passing credentials
	Connecting domains, subdomains and optionally SSL
	Passing credentials and configuration options
	Volumes

	Understanding architecture
	Profiles - matching services by query
	Example
	Syntax

	Deploying to production with Ansible
	Concept - Single key to all credentials
	Getting started with Harbor deployments
	Advanced usage

	From authors

